Experiment:

- A constant force was applied to different _____.
- The ______ was measured for each area chosen.
- 1. Which variable was manipulated? _____
- 2. Which was the responding variable?
- Pressure will be plotted on which axis? _____

Area, A (cm²)	Pressure, P (N/cm²)	
1.0	25.0	
2.0	12.5	
3.0	8.5	
4.0	6.4	
5.0	5.0	

Make graphs on your own graph paper. Do not continue until told to do so.

Graph #1 (P vs. A) was a ______. This means P is ______ proportional to A.

Graph #2 (P vs. 1/A) was a ______. This means P is ______ proportional to 1/A. P α _____

How do you turn a proportion into an equation? _____

P = X OR P =	rearrange P x =
--------------	-----------------

In the last column of the table, calculate " $P \times A$ ". Within the bounds of experimental error, " $P \times A$ " is a _____.

Challenge: PA = k, so what does "k" represent? Fill in the units with the video to find out: